分数应用题的解题是有规律可循的,家长在辅导学生时,就要教学生抓住规律,得出解题方法。总的来说,帮助学生攻克分数应用题,有六个解题方法。下面就是小编给大家带来的六年级数学分数应用题解题方法,希望能帮助到大家!
小学六年级数学分数应用题解题方法之字斟句酌
分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。比如:
汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?
分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。所以降低后是120%-24%=96%。
小学六年级数学分数应用题解题方法之抓不变量
有些分数应用题数量变化多,分析难度大,不易列式计算。但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。比如:
有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?
分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。则“取前”第一桶占两桶水总重量的1/1+6=1/7,“取后”第一桶占两桶水总重量的1/1+4=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)
小学六年级数学分数应用题解题方法之找准单位“1”的量
不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
一般来讲,单位“1”的确定有以下两点方法和规律:
1、关键句中分数前面有个“的”,“的”字前面的量就是单位“1”的量。
如“甲的2/3是乙”,那么单位“1”的量就是2/3前面的“甲”;“乙是甲的4/7”,那么单位“1”的量就是“甲”;“乙的7/8相当于甲”,那么单位“1”的量就是“乙”。
2、关键句中“比”字后面的量是单位“1”的量。
如“篮球比足球多1/3”,那么单位“1”的量就是比字后面的量足球;“足球比篮球少1/4”,那么单位“1”的量是篮球。
小学六年级数学分数应用题解题方法之运用逆推找出解题方法
有些分数应用题,如果按照从始至终的先后顺序去分析,很难达到解决问题的目的,甚至陷入绝境。家长可以引导孩子不妨“反过来想一想”进行逆推,便容易打开思路,顺利解题。比如:
倒一个油桶里的油,第一次倒出1/3后加入20千克,第二次倒出这时油的1/6多5千克,这时桶里剩下油95千克。问原来桶里有油多少千克?
分析:从最后条件出发思考:95+5=100(千克),即为现存油的5/6,故现在桶里有油100除以5/6=120(千克)。
再从第一个条件思考,120-20=100(千克),即为原存油的2/3,因此,原来桶里有油100÷ 2/3=150(千克)。
综合算式:
﹝(95+5)÷(1-1/6)-20﹞÷(1-1/3)=150(千克)
小学六年级数学分数应用题解题方法之利用假设推算找出解题方法
有些分数应用题,如果按题中所给条件直接去思考,就难以找到解题方法,如果在解题时先假设一个主观上所需要的条件,然后按照题目里数量关系推算,所得的结果发生与题目条件不同的矛盾,再进行适当的调整,即可找到正确的答案。如:
李家村修一条路,第一周修了全长的2/5多10米,第二周修了全长的1/4少5米,还剩下282米没有修,这条路长多少米?
分析:假设第一周修的恰好是全长的2/5,这样第一、二周修后剩下的282米中就要增加10米。
假设第二周修的恰好是全长的1/4,这样第一、二周修后剩下的282米中就要减少5米,于是条件变为“”第一周修了全长的2/5,第二周修了全长的1/4,还剩(282+10-5)米没有修。
把这条路全长看作单位“1”,那么(282+10-5)的对应分率就是(1-2/5-1/4)。
于是列式为:(282+10-5)÷(1-2/5-1/4)=8201(米)
小学六年级数学分数应用题解题方法之通过变换条件找出解题方法
有些分数应用题,可以通过改变看问题的角度将题中某些已知数量转换成与之有关联的另一个量,使其成为一个较为熟悉的简单的问题,从而找到解题的方法。如:
有两个钱罐,如果从第一个钱罐里取出15元放入第二个钱罐,这时钱罐里的钱正好是第一个钱罐里钱的5/7,已知第二个钱罐里原有钱35元,问第一个钱罐里原有多少钱?
分析:这道题可以转化为熟悉的“归一”问题。题中的5/7根据分数的意义,表示把这时第一个钱罐里的钱平均分成7份,这时第二个钱罐里的钱占其中的5份,这5份共35+15=50(元),则每份是50÷5=10(元)。
因此,这时第一个钱罐有钱10×7=70(元),那么第一个钱罐里原有钱70+15=85(元)。综合算式:(35+15)÷5/7+15=85(元)
六年级数学分数应用题解题方法