在数学考试的过程中要仔细认真,做到不该丢的不能丢,分分计较,做到颗粒归仓。因为解题时即使思路正确,不注意细节与计算也能丢分。下面是小编整理的九年级数学下册二十七章知识点,仅供参考希望能够帮助到大家。
九年级数学下册二十七章知识点
一、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。
二、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
三、三角形相似的判定
1、三角形相似的判定方法
①、定义法:对应角相等,对应边成比例的两个三角形相似
②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似
2、直角三角形相似的判定方法
①、以上各种判定方法均适用
②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
相似三角形常见解题技巧
三角形的可解性
在一个三角形中,必然存在三角、三边、三高、周长、面积这十一个量,若已知其中任意三个不全为角的条件,则可求出其他八个条件(简称知三求八)。
常见辅助线做法:作三角形边上的高
遵循原则:
①特殊角原则,即作高时常常把特殊角放在直角三角形中进行求解
②最长边原则,即作高时常常选择作最长边上的高,使得高在内部
③偶数边原则,即常常将偶数边作为直角三角形的斜边,方便计算
线段长度求法
①计算比:直接计算线段长度
做法:利用可解性直接求出所求比例线段的数值
②共线比:所求比例的两条线段在同一条直线上
做法:利用三角形叉叉图,构造平行线求解
③共三角形比:所求比例的两条线段在同一三角形中
做法:寻找或者构造与之相似且知内比的三角形进行求解
④相似比:所求比例的两条线段在两个相似三角形中
做法:找到两条线段所在的两个相似三角形,利用相似比求解
数学一元二次方程常见考法
1.考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②已知两根或一根构造一元二次方程,这类题目一般比较开放;
2.在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等);
3.列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式。
学数学的最快方法
课后巩固
课后巩固自己的知识点也很重要。课后巩固可以让你的知识点得到一个再记忆的效果,加深记忆数学知识点的效果。
会比较
在学习基础知识(如概念、定义、法则、定理等)时,要运用对比、类比、举反例等思维方式,理解它们的内涵和外延,将类似的、易混淆的基础知识加以区分.如学习棱柱时,我们可以将其和我们已经熟悉的圆柱作对比,总结归纳他们的相同点和不同点,达到加深记忆和理解目的。
写数学学习总结
每周写一次数学学习总结,也是一种提高初中数学学习成绩的好方法。 在写初中数学学习总结的时候,我们可以回顾一下本周的数学学习概况,同时可以写一些自己下一周、下一个月的数学学习规划,这样既能对过去的学习有所总结,还能够对未来的数学学习有所计划,两者加起来的话,将会让我们的数学学习思路和目标更加明确。
九年级数学下册二十七章知识点